

Structure

- Two hydrogen atoms share electrons with one oxygen atom (covalent bonds)
- · Electrons pulled towards oxygen → hydrogens have a partial positive charge
- · Oxygen has two lone (unshared) electron pairs → oxygen has a partial negative charge
- · A polar molecule

Properties

 Good solvent → polar water molecules surround and are attracted to ions or other polar molecules, so they can dissolve and be transported e.g. glucose dissolves in blood plasma

If a molecule has polar OH groups it will dissolve in water. More free OH groups = more soluble.

 Strong cohesion → polar water molecules attracted to each other with hydrogen bonds → water flows well e.g. it forms an unbroken chain in the xylem vessels → has a high surface tension so forms droplets, and can support small organisms · Adhesion → water molecules can stick to other surfaces e.g. the walls of the xylem vessels Useful metabolite → used in metabolic reactions e.g. condensation and hydrolysis reactions · High latent heat of vaporisation → lots of energy needed to break hydrogen bonds → uses lots of heat energy to evaporate so it has a cooling effect High specific heat capacity → hydrogen bonds can absorb lots of energy \rightarrow can buffer changes in temperature because it can lose or gain a lot of energy without changing temperature (good for aquatic organisms) · Ice is less dense than liquid water → ice floats and forms an insulating layer on top of water so aquatic organisms can survive Transparent → allows light to pass through to reach aquatic plants See Module 3 for Density allows organisms to float → gives buoyancy more about water · Water is a good habitat because of its properties transport in plants.

CARBOHYDRATES

HO

 \propto - qlucose

°СН,ОН

OH

OH

CH,OH

Н

ribose

OH

A Level Biology

OCR A Module 2

carbon

OH

B-qlucose

CH,OH

ŌН

Monosaccharides are

carbohydrate monomers.

fructose and galactose.

small soluble

They also include

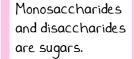
OH

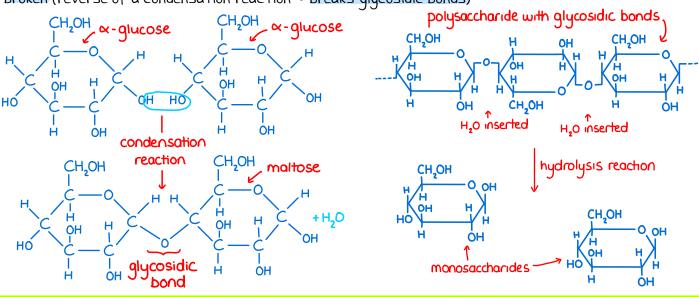
HO

• Carbohydrates contain carbon, hydrogen and oxygen, usually with the general formula $C_nH_{2n}O_n$

Glucose

- A monosaccharide with the formula $C_6H_{12}O_6$
- A hexose monosaccharide (six carbon atoms) in a ring structure
- · Soluble in water → easily transported
- Main energy source for animals and plants


 -> chemical bonds store lots of energy
- Two isomers: «-glucose and B-glucose
 - \rightarrow H and OH groups on carbon l inverted in p-glucose


Ribose

- · A monosaccharide with the formula $C_5H_{10}O_5$
- A pentose monosaccharide (five carbon atoms) in a ring structure
- · A component of RNA nucleotides and ATP

Glycosidic bonds and condensation/hydrolysis reactions

- Condensation reaction: two molecules join to form a new chemical bond and a water molecule is eliminated
- Condensation reactions form glycosidic bonds between monosaccharides to create disaccharides and polysaccharides
- Hydrolysis reaction: a water molecule is inserted and the chemical bond is broken (reverse of a condensation reaction → breaks qlycosidic bonds)

Disaccharides

- · Two monosaccharides joined together with a glycosidic bond in a condensation reaction
- Soluble in water
- · Maltose = ~- glucose + ~- glucose
- · Sucrose = ~- glucose + fructose
- · Lactose = B-glucose + galactose → this disaccharide has a B-glycosidic bond

CARBOHYDRATES

A Level Biology

OCR A Module 2

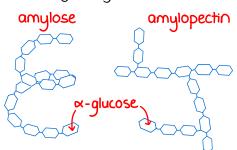
Polysaccharides

- · Large insoluble polymers of monosaccharides joined with glycosidic bonds
- · Starch and glycogen are large metabolically inactive energy storage molecules which cannot leave cells

Starch

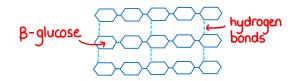
- · Glucose storage in plants → hydrolysed when glucose is needed
- Insoluble in water → does not affect the water potential of cells so water is not drawn in by osmosis
- Amylose → unbranched ~-glucose polysaccharide (~1,4 glycosidic bonds)
 - → coiled structure so is compact
- Amylopectin \rightarrow branched \propto -glucose polysaccharide (\approx 1,4 and \approx 1,6
 - glycosidic bonds) so is compact
 - → branches mean enzymes can easily access more glycosidic bonds = faster glucose release

Glycogen

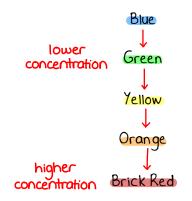

- Excess glucose storage in animals
 → easily hydrolysed when glucose is needed
- Insoluble in water → does not affect the water potential of cells so water is not drawn in by osmosis
- Highly branched ~-glucose polysaccharide (~1,4 and ~1,6 glycosidic bonds) → more ends so glucose can be released quickly by enzymes, and more energy can be stored in a small space
- More branched and compact that amylopectin

Benedict's test for sugars

- · Monosaccharides, maltose, and lactose are reducing sugars
- · Sucrose is a non-reducing sugar
- Add an excess of blue Benedict's reagent to liquid food sample in a test tube.
- 2) Heat the tube in a water bath set to boil.
- 3) If reducing sugars are present: coloured precipitate forms. End test here.
- 4) If no reducing sugars are present: solution stays blue. Go to step 5.
- 5) Break down non-reducing sugars to monosaccharides: add dilute HCI to new sample and heat in a water bath set to boil.
- 6) Neutralise with sodium hydrogencarbonate, then repeat stepsI) and 2).
- If coloured precipitate now forms, non-reducing sugars are present in the sample.
- 8) If the solution is still blue, neither type of sugars are present.


Iodine test for starch

- Add iodine in potassium iodide solution to sample.
- 2) If starch is present: goes from browny-orange to blue-black.

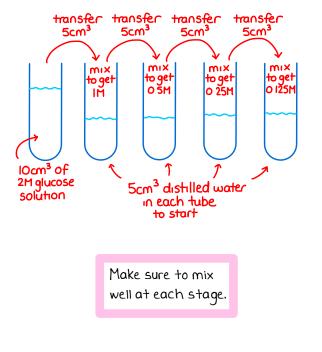


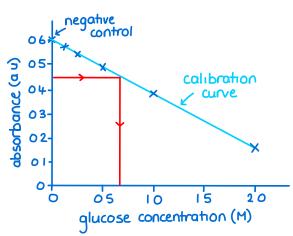
Cellulose

- · Found in plant cell walls to give strength
- Unbranched long and straight B-glucose polymers (BI,4 glycosidic bonds)
- Chains linked with many hydrogen bonds to form inflexible microfibrils with high tensile strength

Colour of precipitate depends on the concentration of reducing sugars:

You could filter, dry, and weigh the precipitate to make more accurate comparisons.


CARBOHYDRATES


Using a colorimeter

- A more accurate and quantitative way to measure glucose concentration after the Benedict's test (judging colour is subjective and more affected by human error)
- When the precipitate is filtered out of the solution, the solution left is the Benedict's reagent
 → more glucose = more precipitate = the less blue the remaining solution will be
- · A colourimeter measures absorbance of light → lower absorbance = more blue colour lost = more glucose
- · Zero the colorimeter to distilled water to make sure values are comparable
- · Can use a serial dilution of a known concentration of glucose to produce a calibration curve

In this case we are diluting the glucose solution by a factor of two each time.

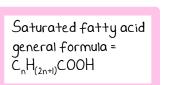
Carrying out the Benedict's test on all tubes and a negative control (distilled water) will produce a calibration curve. Use the red filter on the colorimeter to measure absorbance.

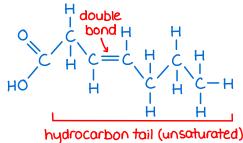
Now we can measure the absorbance of a glucose solution with unknown concentration and use the calibration curve to predict the concentration. This is called interpolation.

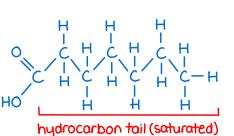
Reagent test strips and biosensors

- · Glucose test strips have enzymes which will test for the presence of glucose
 - → insert the test strip into the liquid sample, then compare the colour to a colour chart to find the concentration of glucose
- Biosensors are electrical devices which can measure concentration of glucose using an enzyme and electrodes
- · Useful for testing glucose concentration in urine and blood
- · Other molecules can be tested for using these methods

variable group

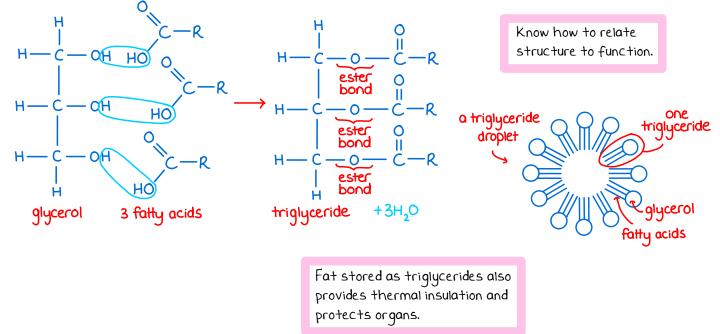

· Lipids contain carbon, hydrogen and oxygen


Fatty acids


- · Have a variable R group → the hydrocarbon tail
- · Saturated fatty acids → no double C=C bonds in the hydrogen carbon tail
 - → more tightly packed together so higher melting point e.g. butter
- · Unsaturated fatty acids → one or more double C=C bonds in the hydrocarbon tail so the chain kinks

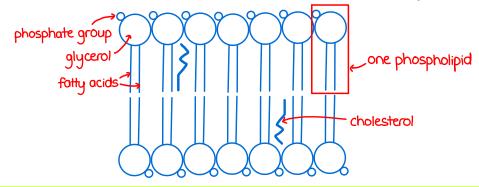
TPTDS

- → kinks mean molecules are less tightly packed together so lower melting point e.g. vegetable oils
- → monounsaturated fatty acids have one double C=C bond, polyunsaturated fatty acids have more than one double C=C bond
- · Hydrocarbon tails are hydrophobic (insoluble in water)



Triglycerides

- · One molecule of glycerol bound to three fatty acids
- Fatty acids join to glycerol in a condensation reaction → an ester bond is formed and a water molecule is released (this can also be called esterification)
- · Three water molecules released and three ester bonds formed for each triglyceride
- · Ester bonds are broken by a hydrolysis reaction
- · Energy store → hydrocarbon tails release a lot of energy when broken down
- · Insoluble in water → do not affect the water potential of cells so water is not drawn in by osmosis
- · Clump together in droplets with the hydrophobic hydrocarbon tails facing inwards


LIPIDS

Phospholipids

- One molecule of glycerol bound to two fatty acids and a phosphate group
- · Phosphate groups are hydrophilic, fatty acids are hydrophobic
- Form a bilayer in cell membranes → water soluble (polar) substances cannot pass through the hydrophobic centre of the bilayer

Cholesterol

- Hydrocarbon ring (with a polar hydroxyl group) and a hydrocarbon tail
- Small and flat shape → fits between phospholipids and binds to hydrophobic tails
- Reduces fluidity of eukaryotic cell membranes
 → phospholipids are more tightly packed so the membrane is more rigid

Emulsion test for lipids

- I) Mix food sample with ethanol and shake until dissolved
- 2) Pour mixture into water
- 3) If lipid is present → milky emulsion forms (the more obvious it is, the more lipid there is)
- 4) If no lipid is present → stays clear

PROTEINS

A Level Biology

OCR A Module 2

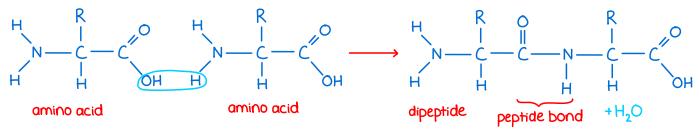
A monomer is a smaller

unit from which larger

Amino acids can be joined in any

order and length.

polymers are made.

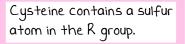

Amino acids

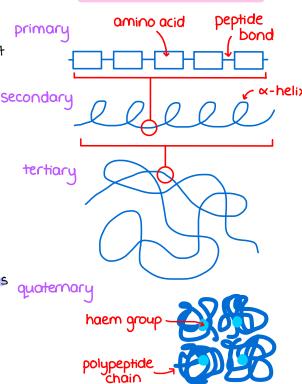
- The monomers of proteins
- · Contain carbon, hydrogen, nitrogen, oxygen and sometimes sulfur
- · Have a carboxyl group, an amine group, and a variable R group
- There are 20 different amino acids, each with a different R group

amine group N - C - C carboxyl group (NH₂) (COOH)

Peptide bonds and dipeptides

- A condensation reaction joins two amino acids with a peptide bond
 - > produces a dipeptide and a molecule of water
- A hydrolysis reaction breaks a peptide bond by adding a molecule of water
- · A polypeptide is a polymer of amino acids (a long chain a amino acids joined with peptide bonds)




Protein structure

 Primary structure → order of amino acids in the polypeptide chain → amino acids are joined with peptide bonds

Secondary structure

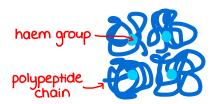
- → alpha helix (coiled) or beta pleated sheet (folded)
- → can be areas of both alpha helix and beta pleated sheet within the same polypeptide
- → hydrogen bonds between partial charges on parts of amino acids in the polypeptide
- Tertiary structure
 - → further folding and coiling (bonds form between R groups of amino acids in the polypeptide)
 - → more hydrogen bonds
 - → ionic bonds between positively and negatively charged K groups
 - → disulfide bridges between cysteine amino acids
 - \rightarrow hydrophobic regions clump together, hydrophilic regions turn outwards
 - → final structure for proteins made from one polypeptide
- Quaternary structure
 - → some proteins have more than one polypeptide chain
- → chains held together with bonds e.g. disulfide bridges Page 1 of 3

© Dr Zoë Huggett

PROTEINS

Globular and fibrous proteins

- · Globular → soluble, spherical, often complementary to another molecule
 - → hydrophilic regions face outwards and hydrophobic regions face inwards which makes them soluble


Enzymes

e.g. amylase

→ easily transported

Haemoglobin

carries oxygen in red blood cells

- active site

Hormones

e.g. insulin

two polypeptide chains joined with disulfide bridges

Haemoglobin is a conjugated protein: a globular protein with a non-protein prosthetic group (haem) attached with covalent, ionic, or hydrogen bonds.

Primary structure determines the tertiary structure and function.

- · Fibrous → long chains of amino acids, insoluble (many hydrophobic R groups), flexible, strong
 - → little tertiary structure and mostly unreactive
 - -> chains parallel to each other or twisted round each other into a rope shape
 - → chains held together with many crosslinks e.g. disulfide bridges
 - → provide strength, support, and flexibility (structural functions)

Collagen

Elastin

in elastic connective

tissue to allow stretch and recoil

e.g. in arteries

Keratin

in skin and other external structures

for strength

e.g. hair, nails, horns

in connective tissue for strength

around each other

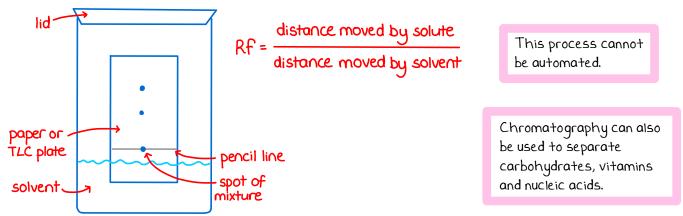
Biuret test for proteins

- Add a few drops of sodium hydroxide solution to the sample to make it alkaline.
- 2) Add copper (II) sulfate solution.
- 3) If protein is present: solution turns purple.
- 4) If no protein is present: solution stays blue.

The colour change is subtle in this test.

Page 2 of 3

ZH Tutorials


PROTEINS

Separating and identifying amino acids using chromatography

- Chromatography separates particles based on their different affinities for the stationary phase vs the mobile phase
 - → particles can adsorb to stationary phase
 - \rightarrow particles are soluble in the mobile phase
- \cdot Paper chromatography \rightarrow stationary phase is paper, mobile phase is normally water
- Thin layer chromatography (TLC) → stationary phase is silica gel, mobile phase is normally an organic solvent e.g. butanol (water cannot be used if the amino acids are hydrophobic)
- Only R groups differ in amino acids \rightarrow R group determines the interaction with the stationary and mobile phases
- · A more soluble amino acid spends more time in the mobile phase

Method:

- 1) Draw a pencil line near the bottom of the paper or TLC plate
- → do not use pen because it will dissolve in the solvent 2) Put concentrated spots of your amino acid mixtures onto the pencil line
 - -> make sure the spots are spread out so they do not merge
 - -> let the spot dry and then repeat to build up a concentrated spot
- 3) Place the paper or TLC plate into the solvent
 - → make sure the pencil line is above the solvent so the spots do not dissolve into the solvent
 - → make sure the paper or TLC plate is supported to be kept level and at a constant height
- 4) Put a lid on the container to prevent the solvent from evaporating
- 5) Allow the solvent to move up until it is nearly at the top, then remove paper or TLC plate
 - → mark the solvent front with pencil to avoid confusion when it dries out
 - \rightarrow stain the paper or TLC plate with ninhydrin to visualise the amino acids
- 6) Calculate the Rf values
 - ightarrow repeat the experiment and find the average Rf value to increase accuracy
- 7) Look of Rf values in standard reference tables to find out which amino acids you have in the mixture

- · Safety considerations
 - → wear gloves to protect skin and to prevent contamination (your hands might have amino acids on them!)
 - \rightarrow work in a fume cupboard if using organic solvents or ninhydrin

Molecules adsorb to the stationary phase, not absorb.

 \mathcal{O}_{4}

H+

 K^{+}

NO3

OH

CL

Nat

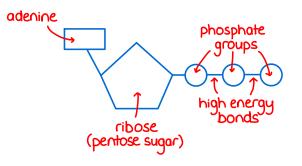
NH,

- Ions have electric charge → anions have negative charge → cations have positive charge Inorganic ions are soluble → dissolved in the fluids of an organism and in the cytoplasm Examples Phosphate ions → attached to other molecules to become a phosphate group (phosphorylation) → found in ATP, DNA, RNA, phospholipids and calcium phosphate (in bones) \rightarrow give DNA and RNA a negative charge → used in photosynthesis and respiration • Nitrate ions → source of nitrogen for plants (absorbed from the soil)
 - HCO3 Hydrogencarbonate ions → help to maintain pH of the blood by acting as a buffer
 - Chloride ions → a cofactor for amylase → help to maintain pH of the blood (chloride shift)
 - Hydroxide ions → more OH ions means a high (more alkaline) pH
 - Hydrogen ions → more H⁺ ions present means a lower (more acidic) pH → enzyme activity is affected by pH (and therefore H⁺ concentration)
 - Sodium ions → used in co-transport to help molecules cross membranes e.g. glucose absorption in the small intestine
 - → needed to create an action potential in neurones
 - → involved in regulation of fluid balance
- Potassium ions → needed to create an action potential in neurones
 - → involved in muscle contraction and regulation of fluid balance
 - → activate some enzymes in photosynthesis
- Ammonium ions → source of nitrogen for plants (absorbed from the soil)
- Calcium ions → important role at synapses between neurones and in muscle contraction
 - → a cofactor for some enzymes involved in coagulation (blood clotting)

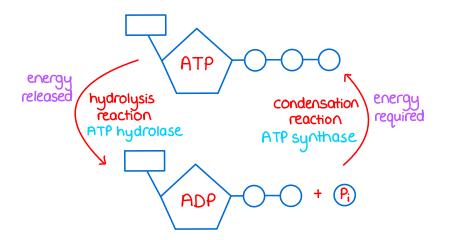
Z∩²⁺

- → important for the secretion of insulin from the pancreas
- · Zinc ions → a prosthetic group of carbonic anhydrase

Inorganic normally means no carbon, but HCO_3^- is an exception. Ca2+



OCR A Module 2


Structure

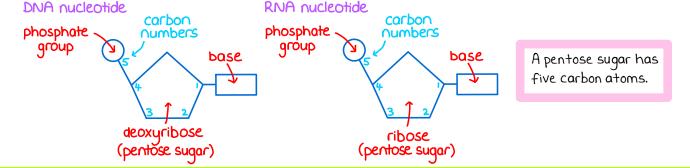
- · ATP = adenosine triphosphate
- · Contains carbon, hydrogen, oxygen, phosphorous and nitrogen
- · A phosphorylated nucleotide
- · A ribose sugar bound to adenine (a purine base) and three phosphate groups
- · Energy stored in high energy bonds between phosphate groups
- · Phosphodiester bond between the phosphate and ribose

Function

- · Diffuses to areas of cells where energy is needed and does not leave the cell
- Hydrolysed to ADP (adenosine diphosphate) and P_i (inorganic phosphate) → energy is released for use in metabolic reactions
- Immediate energy supply → not stored long term
- Rapidly re-synthesised by phosphorylating ADP with P_i → requires energy released from glucose in respiration

Remember that water is produced in condensation and used in hydrolysis.

DNA AND RNA

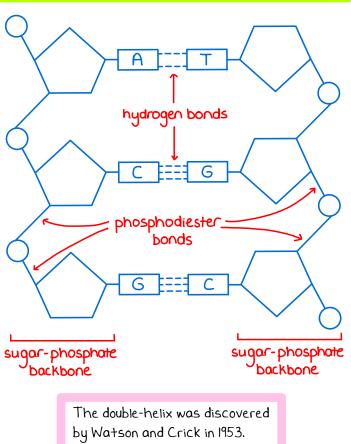

- · DNA = deoxyribonucleic acid, RNA = ribonucleic acid
- · Contain carbon, hydrogen, phosphorous, oxygen and nitrogen

DNA nucleotides

- The monomers of DNA
- Consist of a pentose sugar (deoxyribose), a nitrogenous base, and a phosphate group
- The base can be adenine (A), thymine (T), guanine (G) or cytosine (C)

RNA nucleotides

- · The monomers of RNA
- Consist of a pentose sugar (ribose), a nitrogenous base, and a phosphate group
- The base can be adenine (A), uracil (U), guanine (G) or cytosine (C)
- Both DNA and RNA nucleotides form polynucleotides \rightarrow phosphodiester bonds form between the phosphate group of one and the deoxyribose of the next in a condensation reaction
- A and G are purine bases → contain two carbon-nitrogen rings
- T, U and C are pyrimidine bases → contain one carbon-nitrogen ring (smaller than purines)

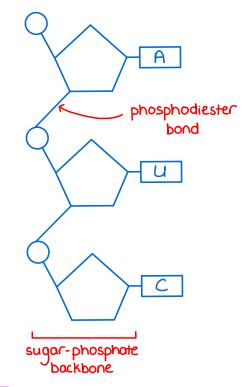


DNA

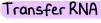
- · Stores genetic information
- · Double-stranded polymer of DNA nucleotides
- Two antiparallel polynucleotide chains twisted into a double-helix structure
- The phosphate groups and pentose sugars form the sugar-phosphate backbone
- · The bases join by complementary base pairing
 - → A pairs to T with two hydrogen bonds
 - → C pairs to G with three hydrogen bonds
 - \rightarrow holds the two strands together

Antiparallel means the strands run in opposite directions: one is 5' to 3', the other is 3' to 5'.

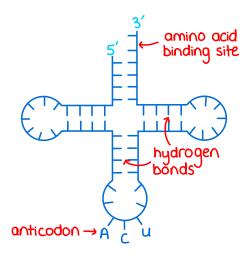
There is always the same amount of A and T and the same amount of C and G in DNA.

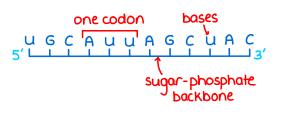


DNA AND RNA


RNA

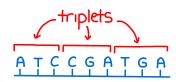
- · A single polynucleotide chain with different functions
- · Single-stranded polymer of RNA nucleotides
- The phosphate groups and pentose sugars form the sugarphosphate backbone
- Complementary base pairing happens in transcription and translation → A pairs with U, C pairs with G
- Messenger RNA (mRNA) transfers genetic information from DNA to the ribosomes
- Transfer RNA (+RNA) brings amino acids to the ribosomes
- Ribosomal RNA (rRNA) is part of the structure of ribosomes along with proteins




Messenger RNA

- A single linear polynucleotide strand made during transcription in the nucleus
- · Can be different lengths
- Much shorter than DNA → can fit through the nuclear pores
- A three base sequence is a codon

- A single polynucleotide strand folded into a clover leaf shape
- Hydrogen bonds between complementary bases hold the shape
- Contains an amino acid binding site and an anticodon
- · Found in the cytoplasm

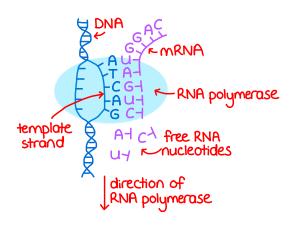


DNA purification

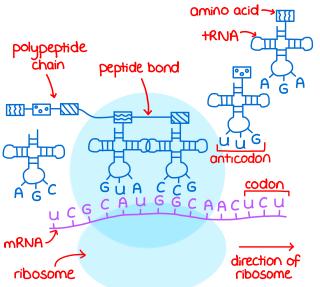
- · A method to extract pure DNA from cells
- If using plant cells, crush and grind the piece of plant using a pestle and mortar or blender
 → this breaks the cell walls
- 2) Mix and incubate in a 60°C water bath with a solution of detergent and salt for about 15 mins
 - → the detergent breaks cell membranes to release the contents of the cells and nuclei, the salt binds to the DNA to help it precipitate
- 3) Transfer to an ice bath to cool then filter the solution
 - → low temperature reduces the activity of enzymes which could break down DNA
- 4) Add protease and RNAse enzymes to the filtered solution, then add ethanol
 - → protease hydrolyses the histone proteins associated with DNA
 - → RNAse hydrolyses any RNA present
 - → ethanol precipitates the DNA from solution and it will be visible as a white layer which can be removed carefully

The genetic code

- · A triplet of bases codes for one amino acid → sequence of bases determines primary protein structure
- · Non-overlapping → each nucleotide is only part of one triplet of bases, there is never overlap
- Degenerate → more than one triplet codes for each specific amino acid
- · Universal → the genetic code is the same in all species
- · A gene is a sequence of DNA that codes for a polypeptide


СТТ		code for
СТС		eucine
CTA	TTG J(an a	amino acid)

PROTEIN SYNTHESIS


Transcription

- Transcribing DNA to mRNA
- · Happens in the nucleus in eukaryotic cells and the cytoplasm in prokaryotic cells
- · DNA is too large to fit through the nuclear pores → mRNA is shorter so can travel to the ribosomes
 - RNA polymerase attaches to DNA at the start of a gene (the start codon).
 - 2) Hydrogen bonds between the DNA strands break leaving exposed bases on the template strand.
 - 3) Free RNA nucleotides complementary base pair with the exposed bases.
 - 4) RNA polymerase joins the RNA nucleotides together with phosphodiester bonds in condensation reactions.
 - 5) RNA polymerase moves along the DNA until it reaches the end of the gene (the stop codon), then detaches.

Translation

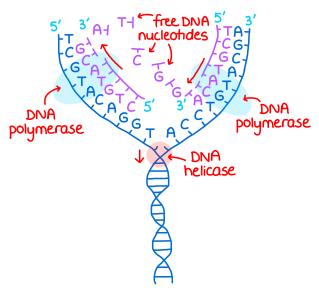
- · Translating mRNA into a polypeptide
- · Happens at the ribosomes

mRNA codons are complementary to DNA triplets: DNA triplet ATC mRNA codon UAG

tRNA anticodons are complementary to mRNA codons: mRNA codon UAG tRNA anticodon AUC

- I) The mRNA from the nucleus travels to the ribosomes and the ribosome attaches at the start codon.
- tRNA molecules bring specific amino acids to the ribosomes.
- 3) The anticodon on the tRNA complementary base pairs with the codon on the mRNA.
- 4) A second tRNA molecule lines up next to the first and a peptide bond forms between the amino acids.
 (in a condensation reaction catalysed by rRNA)
- 5) The ribosome moves along until it reaches a stop codon then detaches.

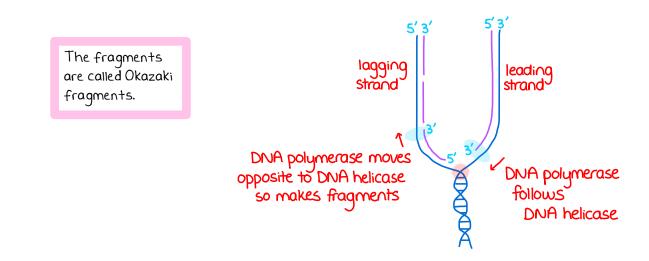
Ribosomes are made of ribosomal RNA (rRNA) and protein.



DNA REPLICATION

OCR A Module 2

Semi-conservative replication


- The Watson-Crick model shows that DNA replication is semi-conservative
 → each new DNA molecule has one strand from the original DNA molecule and one newly synthesised
 strand
- · Both strands of the DNA act as template strands and determine the order of bases
- · Complementary base pairing makes sure that DNA replication is accurate
 - → a purine must pair with a pyrimidine because they are different sizes
 - -> the right number of hydrogen bonds must be able to form, so each base only has one option

- DNA helicase breaks weak hydrogen bonds between complementary bases so the double helix unwinds and the two strands separate.
- 2) Free DNA nucleotides are attracted to exposed bases on the two template strands and pair up by complementary base pairing.
- 3) DNA polymerase joins the adjacent nucleotides with phosphodiester bonds in condensation reactions to form the sugar-phosphate backbone.
- 4) The DNA winds into the double-helix shape.

Random spontaneous mutations can occur during DNA replication, which can alter protein structure and function.

- DNA polymerase can only form phosphodiester bonds in the 5' to 3' direction of the new strands
 - → it can only add nucleotides at the 3' end due to enzyme specificity
 - → the leading strand is made in one piece
 - → the lagging strand is made in fragments which are joined by DNA ligase

ENZYMES

A Level Biology

OCR A Module 2

Function of enzymes

- · Enzymes are globular proteins with a specific tertiary structure
- · The active site is complementary to one specific substrate
- \cdot Biological catalysts \rightarrow speed up a reaction by lowering the activation energy
- · Can be intracellular (act inside cells) or extracellular (act outside cells)
- Determine structure and function of cells and whole organisms

Induced fit model

- · Replaced the lock and key model (where the enzyme and substrate are exactly complementary shapes)
- The active site is not fully complementary before reaction → shape of the active site changes as substrate binds to form the enzyme-substrate complex

complex

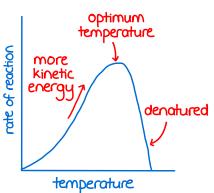
Temperature

- As temperature increases, enzyme and substrate have more kinetic energy so there are more frequent successful collisions and more enzyme-substrate complexes form
- · After the optimum temperature, the enzyme becomes denatured
 - → too much kinetic energy breaks the hydrogen bonds and ionic bonds between amino acid R groups

enzyme-substrate complex

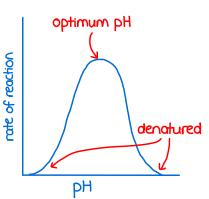
- → the shape of the active site changes so it is no longer complementary to the substrate
- → enzyme-substrate complexes cannot form

substrate


enzyme

- · Effects of low temperature are reversible, high temperature are not
- The temperature coefficient (Q_{10}) tells you by what factor the rate of reaction changes when you increase the temperature by 10°C

$$Q_{10} = \frac{R_2}{R_1} \leftarrow rate at temperature + 10°c$$

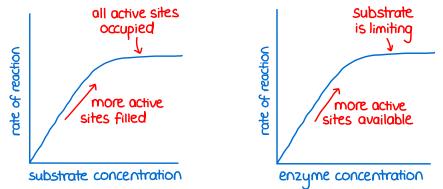

pН

- Enzymes are denatured above and below the optimum pH
 - → H⁺ (acidic) or OH (alkali) ions interfere with the hydrogen bonds and ionic bonds between amino acid R groups, so the tertiary structure is altered and the active site is no longer complementary to the substrate

unchanged

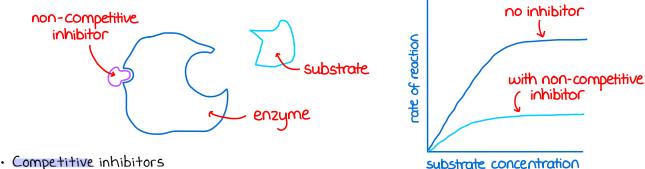
enzyme

Very few substrates would have enough energy to react without an enzyme.

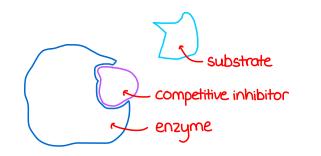


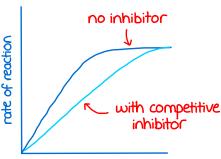
ENZYMES

A Level Biology


Enzyme or substrate concentration

- Increasing enzyme or substrate concentration increases the frequency of collisions between enzyme and substrate, so more enzyme-substrate complexes form
- · Eventually all available active sites are filled, or substrate concentration becomes limiting

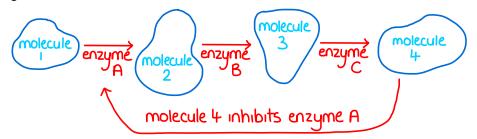



Inhibitors

- Non-competitive inhibitors
 - → bind to an allosteric site on the enzyme (not the active site)
 - \rightarrow alter the tertiary structure so the active site changes shape
 - → active site no longer complementary to substrate, so less enzyme-substrate complexes form
 - → increasing substrate concentration does not increase the rate of reaction

- substrate concentration
- Ave a very similar tertiary structure to the substrate
- → bind to the active site in place of the substrate so less enzyme-substrate complexes form
- → increasing substrate concentration will increase the rate of reaction (because the substrate "wins" the competition more often)

substrate concentration


- Non-reversible inhibitors bind to the enzyme with strong covalent bonds
- Reversible inhibitors bind to the enzyme with weak hydrogen bonds

ENZYMES

End-product inhibition

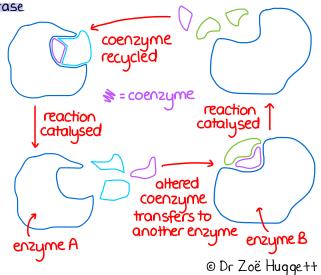
- · When the final product in a metabolic pathway inhibits an enzyme further up the pathway
- · Helps to regulate the pathway and control the amount of products
- · A type of reversible inhibition

A metabolic pathway is a linked series of reactions happening in a cell.

- · Enzymes are sometimes synthesised as inactive precursors
 - \rightarrow enzyme is inactive until part of it is removed
 - -> allows enzymes to be activated under specific conditions
 - → can prevent an enzyme damaging cells e.g. protease enzymes digesting intracellular proteins

Drugs and metabolic poisons

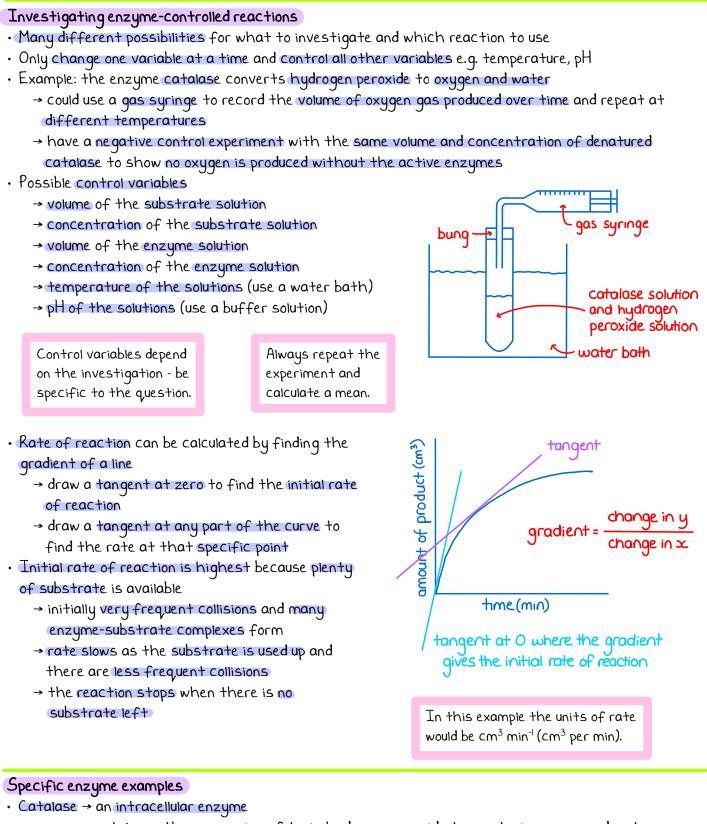
- · Some medicinal drugs or metabolic poisons are enzyme inhibitors
- · Statins → a drug commonly taken to lower blood cholesterol
 - → competitive reversible inhibitors of HMG-coA reductase which synthesises cholesterol in the liver
- \cdot Cyanide \rightarrow a metabolic poison which irreversibly inhibits cytochrome c oxidase
 - → cytochrome c oxidase is needed for oxidative phosphorylation in aerobic respiration


Inhibiting aerobic respiration means inhibiting ATP production so there is not enough energy for other processes.

Cofactors

- · Non-protein inorganic molecules or ions which help the substrate to bind to the enzyme
- · Called a prosthetic group if tightly bound to the enzyme with bonds e.g. covalent bonds
- · Not used up or changed in the reaction
- Zinc ions $(Zn^{2+}) \rightarrow \text{prosthetic group for carbonic anhydrase}$
- Chloride ions (Cl⁻) → cofactor for amylase

Coenzymes


- Non-protein organic molecules not permanently attached to an enzyme
- \cdot Needed to allow an enzyme to function
- Transfer chemical groups between enzymes and are continually recycled
- Many vitamins are coenzymes

A Level Biology

ENZYMES

- → catalyses the conversion of toxic hydrogen peroxide to non-toxic oxygen and water
- Amylase → an extracellular enzyme secreted by the salivary glands and pancreas
 - → hydrolyses starch to maltose in digestion (breaks glycosidic bonds)
- Trypsin → an extracellular enzyme secreted by the pancreas
 - → hydrolyses peptide bonds in large polypeptides to create smaller polypeptides